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Using quantum Monte Carlo simulations, we study a mixture of bosons and fermions loaded on an optical
lattice. With simple on-site repulsive interactions, this system can be driven into a solid phase. We dope this
phase and, in analogy with pure bosonic systems, identify the conditions under which the bosons enter a
supersolid phase, i.e., exhibit at the same time charge density-wave and superfluid order. We perform finite-size
scaling analysis to confirm the presence of a supersolid phase and discuss its properties, showing that it is a
collective phase that also involve phase coherence of the fermions.
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The supersolid (SS) phase in which superfluid and solid
order coexist was first examined in “He systems more than
50 years ago.! The presence of a SS phase was conclusively
demonstrated in several lattice models such as variants of the
bosonic Hubbard model. However, this phase has not been
unambiguously observed experimentally and, with the recent
progress in low-temperature physics, the search for experi-
mental evidence of a SS phase has been reinvigorated.

In solid helium, a nonclassical reduction in the moment of
inertia was observed in torsional oscillator measurements.>>
This reduction is due to the appearance of a superfluid frac-
tion in the material and has been first interpreted as a sign of
a SS phase. However, several experimental*~® and numerical
studies” suggested that this superfluid behavior was, in fact,
due to the presence of nonlocal defects in the system (grain
boundaries for examples) along which superfluid currents ex-
ist. The presence of a bulk supersolid phase thus appears to
be questionable in these systems.

Another promising approach for finding a SS phase
emerged in the context of cold atoms loaded on optical lat-
tices. Such systems, being well described by bosonic Hub-
bard models, are a good starting point to look for supersol-
ids. However, the conditions necessary for supersolids to
appear in these models are not easily achieved in real experi-
ments; one generally observes a direct solid-superfluid
transition'? or a coexistence of superfluid and solid (in the
case of a first-order phase transition).!" Supersolids are
stabilized in these models by specific long-range
interactions'>!® or long-range hopping terms.'” Engineering
precisely the values of the interaction as a function of dis-
tance appears to be tricky to achieve.

Recently Bose-Fermi mixtures have been introduced as a
way to study the physics of fermions, using sympathetic
cooling with the bosons to reach very low temperatures.?’?!
However, several theoretical studies?*%’ have shown that
such mixtures loaded on optical lattices have a rich phase
diagram where collective phases of fermions and bosons ap-
pear. Interestingly, with simple repulsive on-site interactions
between fermions and bosons, the system can be driven into
a solid phase where density-wave order develops.? In this
paper, we will study the doping of such a solid phase and see
under what conditions it could be driven into a bosonic su-
persolid phase. Other recent studies suggested the presence
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of SS behavior in Bose-Fermi mixtures.?®=3! Our study is
performed on the translationally invariant system, in other
words in the absence of a confining trap. The results are
expected to be valid for the experimental system with a trap
via the use of the local density approximation (LDA). In this
approximation, the trap potential is treated as a local chemi-
cal potential and the phase of the system is expected to be
locally that of the uniform system with the same chemical
potential. The LDA has been shown to give an accurate map-
ping of the phases of the uniform system onto those of the
trapped one.

The paper is organized as follows. In Sec. I, we introduce
the model and discuss the solid phase which is the starting
point of our study. In Sec. II, we explore the different ways
of doping this system and determine which one could lead to
a supersolid phase. Finally, in Sec. III, we perform finite-size
scaling analysis of physical quantities to verify if the super-
solid phase persists in the thermodynamic limit.

I. SOLID PHASE IN THE BOSE-FERMI HUBBARD MODEL

We study a one-dimensional Hubbard model for a mixture
of bosons and polarized (spinless) fermions. The Hamil-
tonian is given by

L
H=2, (—tyb!, b, —t,f', f,+h.c)

r=1

L b, b

n)(n,—1)

+2 (Ubb—2 + Ubf”tr)”£>, (1)
r=1

where bI (b,) creates (destroys) a boson on site r, while fI
and f, are the corresponding operators for fermions. The first
term in Eq. (1) describes tunneling of bosons and fermions
between neighboring sites, with different associated energies
1, and f;. In the following, the energy scale is fixed by choos-
ing #,=1. n° and n' are the bosonic and fermionic number
operators at site r, and Uy, and U, are the boson-boson and
boson-fermion contact repulsion terms. L is the total number
of sites in a one-dimensional chain.

We will be mostly interested in the behavior of bosons
and will, therefore, study the bosonic Green’s function G,(R)
which measures phase correlations
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as well as the boson superfluid density p,=(W?>L)/(2pt,)
where W is the winding number?? and 3 the inverse tempera-
ture. The density-density correlation function

L
DR = b)) )

and its Fourier transform, the structure factor Sy(k), give in-
formation on possible solid density-wave order.

We study this model using two different versions of the
worm algorithm: the canonical worm (CW) (Refs. 34 and
35) algorithm (CW) and the directed stochastic Green’s func-
tion (DSGF) (Refs. 36 and 37) algorithm. The CW method,
which is very efficient for measurement of equal time
Green’s functions, has to be modified to include simulta-
neous updates of bosons and fermions to allow the study of
mixtures.’® However, this algorithm sometimes becomes in-
efficient for large system sizes (L >20), especially failing to
sample different winding numbers which is necessary to cal-
culate the superfluid density.’® In those cases, we used the
DSFG which explores a much larger configuration space and
thus allows more efficient fluctuations of the winding num-
ber and the measure of p,. The two algorithms gave results in
agreement for other quantities in the range of sizes we used.

This model was widely studied in the special case where
the total number of particles equals the number of sites N,
+Ng=L where Ny, is the number of bosons (fermions).?38
For large enough values of the repulsions, double occupancy
of sites is forbidden and one can describe the system in terms
of a pseudo-spin-1/2 o°=nP—n'= = 1.22?3 The Hamiltonian
can then be mapped, in the low energy limit, into an effective
Heisenberg Hamiltonian

Her= E ny(ojrcaiﬂ + OWXO{H) + 2 Jzoiiaiiﬂ > 4)

where J,,=—tyte/ Uy and J,=(22+12)/ (2Upg) — 12/ Uyy. When
J.> |ny , the pseudospin system enters a Néel antiferromag-
netic phase along the z axis.?® In terms of bosons, this anti-
ferromagnetic order corresponds to a density-wave order
with alternating occupied and empty sites (see Fig. 1).
Green’s function, Gy(R), decays exponentially indicating the
absence of phase coherence. This phase persists in the ther-
modynamic limit at zero temperature (see Fig. 1, inset).

II. DOPING THE SOLID PHASE

A similar density wave ordered phase for N,=L/2 is ob-
served in a one-dimensional bosonic system with near-
neighbor repulsion.!” In this latter system, a supersolid phase
can be present when the solid phase is doped by adding
bosons. However, for a supersolid phase to appear, the inter-
actions must be chosen so that the added bosons do not in-
troduce defects in the previous solid order: they must pref-
erentially come on sites already occupied by bosons. A
mean-field argument yields that the repulsion between
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FIG. 1. (Color online) Density-density correlation Dy,(R) (mul-
tiplied by (—1)®)and Green’s function Gy(R) for the bosons in the
solid ordered phase. Inset: finite-size behavior of the bosonic struc-
ture factor Sy(7r) for the same parameters and sizes ranging from
L=10 to 70.

bosons located on neighboring sites must be greater than half
the on-site repulsion Uy,

Following this example, we consider a system where the
repulsion between bosons, Up,=15, is smaller than the
boson-fermion repulsion Up=18. Starting from the solid
phase obtained for Ny=N;=L/2 and t,=4,” we changed
slightly the number of the different types of particles and
observed how the solid order was modified (see Fig. 2).

We found that upon changing the number of fermions,
some defects are introduced in the solid order, which are
exposed by the characteristic beating in the density-density
correlations (Fig. 2, top).*Y On the other hand, when one
changes the number of bosons, the density-wave order of
alternating empty and filled sites persists (Fig. 2, bottom). A
surprising result is that this wave order is present even when
the number of bosons is reduced below half-filling, unlike
what happens in the purely bosonic model with near neigh-
bor repulsion.!”

Examining the bosonic structure factor Sy(7r) (Fig. 3), we
observe that only the case Ny;=L/2 leads to large S, () and
therefore to the long-range density order necessary for the
establishment of SS. We also observe in Fig. 3 that when the
bosonic population is doped above or below half-filling,
Sy(7) drops but remains rather appreciable especially above
half-filling. Finite-size scaling is required to establish if these
nonvanishing values of S,(7) persist in the thermodynamic
limit (see Sec. III).

As expected, quasi-long-range phase coherence is recov-
ered as soon as the solid is doped away from half-filling (see
Fig. 4) and the bosons become superfluid. This phase coher-
ence is stronger when the system is doped above half-filling.

These results lead to the conclusion that a supersolid
phase can only be found for Ny=L/2, where no defects are
introduced in the solid order. Doping the bosons above half-
filling provides the best candidate to observe a supersolid as
both the structure factor and the phase coherence are larger

184505-2



SUPERSOLIDS IN ONE-DIMENSIONAL BOSE-FERMI...

0.05 A T T T T T T T
U,,=18, U =15, 1=4, L=30, p=2L

N=13

0.025

-0.025

-0.05 : ' : ' : '

0.1

-0.05

-0.1F

-0.15| N,=19 -

I : I .
10 R 15 20

FIG. 2. (Color online) Density-density correlations for different
boson fillings, Ny, and for two different fermion fillings, Ny=L/2
—2 and N¢=L/2. In the first case (a), we observe the beating char-
acteristic of the pseudospin phase at nonzero magnetization along z
with a maximum when N¢+Ny=L. In the second case (b), we see a
long-range order (or quasi-long-range) for the bosons.

in this case, but doping below half-filling could also yield to
a supersolid phase. Finite-size analysis of the behavior of p;
and S, () is needed to verify if the supersolid phase persists
in the thermodynamic limit.

III. FINITE-SIZE ANALYSIS

In this system, the sizes that can be used in the finite-size
scaling analysis are quite limited. In order to avoid sign
problems, N;=L/2 must be odd. In addition, L cannot be
very large in order for the simulation to converge in reason-
able time. We used two different densities of bosons, N,/L
=0.4 and 0.6 (one below and one above half-filling) which
give an integer number of bosons for sizes L=10,30,50....
When we could not obtain exactly these densities with the
given constraints, we used the number of bosons that gives
the closest density.

We first performed the finite-size analysis with the param-
eters used in the first part of this paper (Uy,=18, Uy=15,
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FIG. 3. (Color online) Structure factor Sy () as a function of the
number of bosons N, for different fermion fillings, Ny. The oscilla-
tions characterizing a density order only develop for Ny=L/2.

t;=4) and above half-filling (N,/L=0.6). Figures 5 and 6
show that, for this case, the structure factor goes to zero in
the thermodynamic limit while the superfluid density re-
mains finite. This indicates that what appears to be a super-
solid phase for small L is in fact a superfluid. Varying the
different available parameters (U, Uy, 1;), we observed that
increasing #; increases noticeably the value of Sy,(77), whereas
varying the interaction did not yield similar variations. For
=5 (see Fig. 5) Sy(m) extrapolates to a finite value as L
increases. This indicates that for these values of z; the
density-wave order survives in the thermodynamic limit
when Ny=0.6L and Ny=L/2.

In Fig. 6 we see that the superfluid density changes very
little with L or #;: p, then goes to a finite value when L
— . As mentioned above, obtaining precise values for p; is
difficult but, on the other hand, Green’s function, Gy(R), is
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FIG. 4. (Color online) Phase correlation, G,(R), for different
boson fillings. There is always an algebraic decay characteristic of a
superfluid in one dimension, except at double half-filling in the
solid phase.
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FIG. 5. (Color online) Finite-size scaling of the structure factor
Sy () for different values of the hopping parameter ;. The structure
factor goes to zero in the large size limit for #;=4. For #;>4, in the
range of sizes that are accessible, the structure factor is nonzero.

measured with very good statistical accuracy and can, there-
fore, also be used to characterize the nature of the phase
coherence. Figure 7 shows that G,(R) exhibits power-law
decay for all the sizes and values of the fermion hopping
parameter we have studied (for N,=0.6L), confirming the
existence of a quasi condensate which leads to a superfluid
behavior in the presence of long-range density order for the
fermions.

This indicates the presence of a supersolid phase in this
system for =5, U,,=18, Uy=15, and N,=0.6L.

So far, we have concentrated on the behavior of the
bosons. However, the supersolid phase we have exposed is
necessarily a collective phase of fermions and bosons. To
study the behavior of fermions or the collective behavior of
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FIG. 6. (Color online) Finite-size scaling of the superfluid den-
sity p, in the case where the system is doped above half-filling.
Reliable results for this quantity are difficult to obtain for sizes
larger than L>42. However, p; shows very little variations when L
or #; vary and should then remain nonzero in the large L limit for all
cases.
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FIG. 7. (Color online) Finite-size scaling of Green’s function
Gy (R) for several values of the hopping parameter ;. G,(R) always
appears to decay algebraically. The curves have been multiplied by
a factor indicated in the legend between parentheses.

fermions and bosons, we introduce Green’s functions for fer-
mions Gy, boson-fermion pairs Gy, and boson-hole pairs
th.

L
1 .
G{(R) = ZE Lot + fifrer) (5)
r=1
1 L
Go(R) = =2 (f.kb i+ D) (6)
r=1
1 L
Gon(R) = ZE (frirblogb fi+hc.) )
r=1

Figure 8 shows that these Green’s functions have alge-

10 T—0 T U®5tcccomm 3

10® E
ooG,(R)

10°F [zalG(R) 3
|Gy, (R

W [221GR)]

10 3
U,,=18, U =15, t=7,

10k Ny/L=06, N/L=0.5, =50, p=2L ]

1 2 4 8 16 32
R

FIG. 8. (Color online) Green’s functions for bosons, fermions,
boson-fermion pairs, and boson-hole pairs in the candidate super-
solid phase. All Green’s functions have algebraic decay.
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braic decay in the candidate supersolid phase. The dominant
correlations are those of individual bosons; they have the
slowest decay and the largest values. However, a description
only in terms of bosons does not fully characterize this
phase; we see that individual fermion, boson-hole, and
boson-fermion pairs also have algebraic phase correlations
and are also relevant degrees of freedom in the system. The
boson-hole pairs have much stronger phase correlations than
the boson-fermion pairs. This is to be expected since anticor-
related movement of bosons and fermions is a generic phe-
nomenon in such mixtures with repulsive interactions.?>>>4!

In a similar way to the case above half-filling, we per-
formed finite-size scaling analysis when the system is doped
below half-filling (N,/L=0.4). We studied a case where the
value of # is quite large (;=7), since we observed in the
previous case that it improves the structure factor. We find
that, as for the case above half-filling, the structure factor and
the superfluid density both go to a finite value in the large L
limit and that a supersolid phase is, therefore, thermody-
namically stable (see Fig. 9). This behavior is different from
what happens in the bosonic case with near-neighbor inter-
actions where doping below half-filling leads to a superfluid
with solitonlike quasiparticles.!”40

IV. CONCLUSION

In this paper we have studied, using exact QMC simula-
tions, the formation of supersolid phases in the ground state
of Bose-Fermi mixtures on optical lattices. At double half-
filling, N,=N;=L/2, and for sufficiently large #;/t,, the sys-
tem exhibits long-range density order as exposed by Sy (7).%
Inspired by the behavior of the extended bosonic Hubbard
model, which exhibits a supersolid phase above half-filling
when the near-neighbor repulsion is large enough compared
to the contact term,'>!” we found that, similarly, when
Ups> Uy, and the system is doped by adding bosons, the
system enters a supersolid phase. It is important to keep in
mind that this phase is a collective Bose-Fermi phase: the
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FIG. 9. (Color online) Finite-size scaling of the structure factor
Sp(7) below half-filling (Ny,/L=0.4) for t;=7. The structure factor
goes to a nonzero value in the large size limit. The observed oscil-
lations are due to the fact that we obtained exactly the desired
density (Ny/L=0.4) only for L=30, 50, and 70.

various Green’s functions (boson-boson, fermion-fermion,
and boson-fermion) we have presented demonstrate this
clearly.

Surprisingly, we have also found that upon doping the
system below half-filling for the bosons, we also obtain a
stable supersolid phase. This is different from the behavior of
the purely bosonic system.

ACKNOWLEDGMENTS

FH. and G.G.B. are supported by the CNRS (France)
Contract No. PICS 3659 and V.G.R. by the research program
of the “Stichting voor Fundamenteel Onderzoek der Materie
(FOM).” The authors would like to thank Lode Pollet for
providing us one of the programs used in this study and for
many useful suggestions.

0. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

2E. Kim and M. Chan, Nature (London) 427, 225 (2004).

3E. Kim and M. Chan, Science 305, 1941 (2004).

4Ann Sophie C. Rittner and J. D. Reppy, Phys. Rev. Lett. 97,
165301 (2006).

3 Ann Sophie C. Rittner and J. D. Reppy, Phys. Rev. Lett. 98,
175302 (2007).

6S. Sasaki, R. Ishiguro, F. Caupin, H. Maris, and S. Balibar, Sci-
ence 313, 1098 (2006).

™. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokofev, B. V.
Svistunov, and M. Troyer, Phys. Rev. Lett. 97, 080401 (2006).

8L. Pollet, M. Boninsegni, A. B. Kuklov, N. V. Prokofev, B. V.
Svistunov, and M. Troyer, Phys. Rev. Lett. 98, 135301 (2007).

M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokofev, B. V.
Svistunov, and M. Troyer, Phys. Rev. Lett. 99, 035301 (2007).

10G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev.

Lett. 65, 1765 (1990).

G, G. Batrouni and R. T. Scalettar, Phys. Rev. Lett. 84, 1599
(2000).

12p Sengupta, L. P. Pryadko, F. Alet, M. Troyer, and G. Schmid,
Phys. Rev. Lett. 94, 207202 (2005).

I3R. G. Melko, A. Paramekanti, A. A. Burkov, A. Vishwanath, D.
N. Sheng, and L. Balents, Phys. Rev. Lett. 95, 127207 (2005).

14S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 (2005).

I5D. Heidarian and K. Damle, Phys. Rev. Lett. 95, 127206 (2005).

M. Boninsegni and N. Prokof’ev, Phys. Rev. Lett. 95, 237204
(2005).

7G. G. Batrouni, F. Hébert, and R. T. Scalettar, Phys. Rev. Lett.
97, 087209 (2006).

131, Dang, M. Boninsegni, and L. Pollet, arXiv:0803.1116 (unpub-
lished).

19Y.-C. Chen, R. G. Melko, S. Wessel, and Y.-J. Kao, Phys. Rev. B

184505-5



HEBERT et al.

77, 014524 (2008).

20F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel,
J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87, 080403
(2001).

217, Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W.
Zwierlein, K. Dieckmann, and W. Ketterle, Phys. Rev. Lett. 91,
160401 (2003).

22A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90, 100401
(2003).

ZL.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

24P, Sengupta and L. Pryadko, arXiv:cond-mat/0512241 (unpub-
lished).

Z3L. Pollet, M. Troyer, K. Van Houcke, and S. M. A. Rombouts,
Phys. Rev. Lett. 96, 190402 (2006).

26, Mathey, D.-W. Wang, W. Hofstetter, M. D. Lukin, and E.
Demler, Phys. Rev. Lett. 93, 120404 (2004).

271. Mathey and D.-W. Wang, Phys. Rev. A 75, 013612 (2007).

281, Titvinidze, M. Snoek, and W. Hofstetter, Phys. Rev. Lett. 100,
100401 (2008).

2H. P. Biichler and G. Blatter, Phys. Rev. Lett. 91, 130404

PHYSICAL REVIEW B 78, 184505 (2008)

(2003).

301, Mathey, 1. Danshita, and C. W. Clark, arXiv:0806.0461 (un-
published).

3L, Mathey, Phys. Rev. B 75, 144510 (2007).

32G. G. Batrouni, H. R. Krishnamurthy, K. W. Mahmud, V. G.
Rousseau, and R. T. Scalettar, Phys. Rev. A 78, 023627 (2008).

3E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343
(1987).

34S. M. A. Rombouts, K. Van Houcke, and L. Pollet, Phys. Rev.
Lett. 96, 180603 (2006).

35K. Van Houcke, S. M. A. Rombouts, and L. Pollet, Phys. Rev. E
73, 056703 (2006).

36V, G. Rousseau, Phys. Rev. E 77, 056705 (2008).

37V. G. Rousseau, arXiv:0806.1410 (unpublished).

381, Pollet, Ph.D. thesis, Universiteit Gent, 2005.

39T. Giamarchi, Quantum Physics in One Dimension (Oxford Uni-
versity Press, New York, 2003).

40F. Hébert, G. G. Batrouni, and R. T. Scalettar, Phys. Rev. A 71,
063609 (2005).

41F, Hébert, F. Haudin, L. Pollet, and G. G. Batrouni, Phys. Rev. A
76, 043619 (2007).

184505-6



